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1. Reduction of the problem to the solution of two differential
equations vhen the center of gravity of the body is located on
one of the principal axes of inertia. The problem of motion of a
heavy rigid body about a fixed point, with the center of gravity of the
body located on one of the principal axes of inertia (e.g., y, = z, = 0),
is reducible [1] to the differential equations

(G =—rG—+ 4RO~ +h(=—h)—Qk  (1.1)

A2BC (g)2 — — A2 4 AJw? L A®Byyc 4 P'pt - ANp*x — A®BCx
d:
(0 — A) 5 4 Alp (— h) — 20k] %2 + A(v—p)) 7 =0
Here
vy = A?p? 4 B%% 4+ C*r%, o= }1-2; (Azgp + Byoq + Czor) = A
T = Ap? 4 Bg* 4-Cr? (1.2)
Bi=B+C, J=24—-B—-C, N=2BC—AB—AC
PP=(A—B)(C—A4), Q= Mgz,
and k, h, respectively, are constants of the integral of the moment of
momentum relative to the vertical axis and the integral of the kinetic
energy, which are defined by formulas (1.3) and (2.6) of [1]; the rest
of the notation is the usual one.
The variables y,, v,, y5 are defined by equations (2.9) of [1] :
Hy = VHW — HAp — H,
Hy, =V HW,, — H.Bq (1.3)
Hyps = VHW,, — H,Cr
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1050 A.A. Bogoiavlenskii

where according to (2.6), (2.7), and (2.8) of [11,

Hy=v—p+0, VF:‘z‘:j%
Hk=w—k=gé—[p(f—h)—2()kl, Hu=kp~vy~=—§15[v(v—h)-20kp]
W, =0, W,=Cr, W,=—Bq

Equations (1.3) assume the form
0= —h
2Q (v — %) 12 = Cr -3 — By lp (c — h) — 2Qk] (1.4)
20 (v — p?) 13 = — Bg 3% — Cr[p (x — h) — 2Qk]

Eliminating dt from equations (1.1), we obtain

dv \?
(&) =1¢pshn (1.5)
2 dv 2\ AT
@ — A0 + A0 —0) 3 + Alp (v — k) —2Qk] =0
Substituting the first Fuler equation
d: d
-'% = (B—C)gr 7:—
into (1.4) and taking into account the relations
y—pt=— 2 (g — A)—C(B—C)r
Vg =— 5 (@ — 49+ B(B—CO)g*
and the second equation of (1.5), we get

200 =1—h

20n=q(— 2+ BL)

200=r(-% + o8]

(1.6)

The system of differential equations (1.5), where f is a known function,
can be integrated by writing v and r as polynomials in p and equating the
coefficients of equal powers of p. The quantities p, ¢, r, according to
(1.2), can also be expressed explicitly as functions of p (under the con-
ditions obtained here).

The problem is reduced to one quadrature, that of the second diffe-
rential equation of (1.1), with v, r replaced by the appropriate functions
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of p.

This quadrature introduces a single arbitrary constant t,, which we
shall simply add to t.

We assume that one of the necessary conditions, k = 0, for the inte-
grability of the Fuler-Poisson equations, obtained in [1] 1s satisfied.

From this condition, or from the second equation of (1.5), we then
obtain

— A\ o

200 =— (=) +0—) 5] (1.7)
Hence y,, v,, y; are expressed as explicit functions of p by means of

(1.6), (1.1,

2. Steklov’s second case. To simplify the calculations, we shall
use some of the results of [1].

We suppose that v and r can be represented in the form of ‘polynomials
of degree n in p with constant coefficients

V=ao+ a;p + axp®+ ... + app"

t= byt byp + byt 4. ..+ bnp” 21

Fxpressions for the initial coefficients of the expansions of the
functions v(t), r(t) in a neighborhood of a pole of the second order and
of p(t) in a neighborhood of a pole of order one

v=12(vg i+ vt>+...)
p=1t"(po+put +pat® 4. . (2.2)
t=12(to + 1l + i+ .. .)

were given in Section 4 of [1].

One of the necessary conditions for the special cases of the inte-
grability of the Fuler -Poisson equations, k = 0, is obtained from these
expansions. We suppose that this condition is satisfied and that the
coefficients of the expansions have the values

o . (A—2B)(A — 2C) .
vo = — A2, po—lAV(A_B)(A_C) g = — 24

(2.3)

V1=Px=“1=0

Substituting (2.2) into (2.1), equating the coefficients of like
powers of t, and using (2.3), we obtain
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_ (A—B)(A—C) _ . A=B(A—0
8 =@ —2B)4d—=20) ' “°_”'_Z‘AV(A—za)(A—zc}""
V)YV )
(A—2B)(A —2C) P

by = 2(A—B)(A—-C)
~ A(A—2B)(A—-2C) '

b°= Ts'—4i

a,=b=0, a;=b6=0 (i=3,45 ...

Hence the formulas (2.1) take the form

v_a°+(A—ZB)(A—2c) Py t=bho+ A(A—2B)(A—20) Pt (2.4)

Substituting (2.4) in (1.6) and (1.7), we get

A—BY(A—-C
T = g o B(A—2B) ¢ + € (A—20) ]

__(A—B)y(A-0) _(A=B)(A-=-0)
n=gae—a PP "= qus-a 7

(2.5)

If the polynomials (2.4) for v and r are substituted in the first and
third expressions of (1.2), with p = Ap, and the result,ing two equations
are solved for p? and q?, we obtain the expressions for p° and g% in
terms of r? which were found by Steklov.

We have arrived at Steklov’'s second case [2]. In this connection, we
may mention that not only Steklov, but also Field [3 ], Gorliss [41,
Fabbri [5,6,7 ] and Kuz’'min [8,9] have been concerned with integrating
the equations and clarifying the various possiblities of the motion.

3. Goriachev’ s second case. We perform the transformation

L=k 3.1
on the independent variable in equations (1.1).

As a result, the system (1.1) becomes
(5r) =4 (= v (5= 1 + 4Q1Q (v— ¢*) + ko (s — k) — Qk*))
A®BC (%%)2 = 432 [— A%2 + AJvwp? + AByvt 4 P'p* 4+ ANp’t — ABCr?]

(¢ — 4 B 4 Alp(s—h) — 201 5 + A0 —g) Tz =0 (3.2)

This system of equations admits expansions of the functions v(£),
p (&), r(£) about a pole different from (2.2):

v=8 (g u  E-ut? .. 0) (v #0)
p= g (vo + 771& + U‘;Ez + .o .) (vo 5~ 0) (3-3)
T=8(wo+ wi fwit+...) (wo 5 0)
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Substituting (3.3) into (3.2), equating coefficients of equal powers
of £, and assuming the condition k = 0 to be satisfied, for determining
the coefficients of the series (3.3) we obtain the following systems of

equations:

L. dug+wd=0, uo(y— Bywy) + BCwe =0 (3.4)

(The third equation is an identity).

2. i + Wy = 0, u1Y0 —_ wlro == 0, Ql =0

3. 8wyugw, + u,? + 4w, (2 + 3uywo) = 0
4Au,Y g — 2Aw, (2Bu, — BCwy) + 44u, (u, — Byw,) +
+ ABCw® — v,® (4%y — ABC) =0
2AQ, 4 (— 4ug -+ 34wp) v2 =0
4 — 2uguy + 2wsugwy -+ g (3u; 4 2w,wy) + 2wyEy + vw,t =0
Au8Y0 — AU)3P0 + Augyl —_ szrl — Julvoa — 2”120270 -_ Nw,vo" == 0
3AQ3""" Augwl‘}' 3A?I)2u}"—' 1721 (3?)02—!"' Awo) -+ [} (‘—‘ 8?)0‘*‘ 7Aw°) v°+ 2Aw117§=0
5. 211416')02 -+ 4 (w‘ -_ h) UgWy + Ug (3&1 + 4w1w°) + 4w3E':1 + 2u22 4
+ 2w, (wettg + 2u,w,) = 0
zAau‘Yo tov—n— zAgw‘I‘o + 2Aau3Y1 - 2A3103F1 + 2A2u2Y’ ——
— 2AJuyv® — Avy (40,50 + ABCvo) + 2Aw;(ABCwy — Nv?) —
- 444]“1”1”0 _— 2.‘4371220 —— 4AN?}1w12)° —— ZPPU‘)& = O
4AQ‘ — 2Au3w1 + ZAW3ul —— 2u21’02 e 81]2 (uo -—_ Awo) Yy +
+ Awyvy? — 6uyv,vy — 40,2 (uy — Awy) + SAv,wwy = 0
6. — Guguy -+ 2wsugwy + 2 (Rewy + wey) wo + 2 (wy — h) wig, +
+ UsL + 2wsE, + 2uww; + wyu, =0
Asusy‘) —_ ASW5P0 -+ A2u¢yl - Azw‘Pl + Au3 (2441)‘.2 — ABﬂl}g — Jvoa) _
— Avs (220 + ABC) Vo~ Aws (ABluz —_— 2ABCw2 + Nvoz) —_ ZAJugvlvo —_
— 24v, (0 4 v150) — 2AN w00 — Av)2E; — 4P'vp® = 0
S5A4Q, — 34 (uw; — wyy) — ug (ve? 4+ Aw,) — vg (8ug — 9A4w,) vy —
— Awglty — 4uyvv5 — v, [6uyv, + v (Bug — 94w,) — BAuqv,] +
+ 3Aw2?21v0 — 32712 (ul — Awl) = 0

...............

Here, for brevity, we put
Ty = Buy, — 2BCuws,, 'y = By, — 2BCw,
E; = uwo + wty, Egy == Uy + Wally + Uy
L =uy, + 2wwy + w2, Ly=Juy+ Nw,, I,=Ju + NVNu,
Yy = 2uy — Bw,, Y, =2u, — Byw,, Ys=uy— Byw,
Q, = — ugw, + wyu, (s=1,...,9)
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The values
Uy = — 4B%, wo=—4B or uy=—4C? w,=—4C
are a solution of the first system of (3.4).

For precision we take the first values of uy, . The second system
of (3.4) yields u, = w, = 0. The third system of (3.4) assumes the form
w2 = 0
16A(B —C)u, — (164B — 15AC — 16 B2 4 16BC) v2 = 0
24u, — (34 — 4B)r2 =0

If the condition A = C = 4B /3 previously obtained ([1], Section 5)
is excluded, then for v, # 0, the determinant of the system consisting
of the last two equations must be put equal to zero. This gives a
necessary condition, which can be written in one of the following forms:

8AB —9AC —16B(B—C) =0, AC = 8(A — 2B)(B —C),

C="Gi—mr (3.5)
It follows that A £ 2B, B £ C, and
wy, = E%%ﬂ ve? (3.6)
The fourth system of (3.4) becomes
uy + 4Bwy — 0
Hduy — ABwg —2(A— B)vw, =0 3.7

34 (g — Bws) — (TA — 8B) v,0, = 0

By virtue of (3.5), the solution of this system is
g = wy=v; =0

Because of the relations previously obtained the fifth system of (3.4)
can be reduced to

16182 (uy + 28w, — 2Bh) + CAIB pa g (3.8)
842B (u, — Buw, — vyty) — s (A — 6AB + 24C 4 8B% — 4BC) vgt =
T(B—0)
8B (A (us — Bw,) — 2 (4 — B)vyve] — G448 pa— g

Using the third equality of (3.5), the last two equations of (3.8)
yield
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52 9A% —574°B + 1084B* — 64B®
2  16AB (A —2B) (94—16B) (B —C)

We will not derive explicit expressions for Uy, Wy

The sixth system of (3.4) can similarly be reduced to

3us + 4Bwy; =0
A(uy — Bws) — 2Brgv, = 0 (3.9)
54 (us — Bws) — (94 — 8B) vgvy = 0 )
The determinant of this system (relative to ug, wg, va) does not vanish
because of (3.5); consequently, Ug = wg = vy = 0, etc.

We assume, as before, that

v=my+ mp + myp®+ ... 4 mup"
T= Ny mp 4 ngp? L. g

Substituting (3.3), with the values of u;, v, w; just found, in the
left and right sides of (3.10), and equating coefficients of like powers
of £, we obtain a system of algebraic equations for determining the
coefficients m; and n;. Substituting the values of ujy, wy, u,, v, into
the algebraic equations, we get

(3.10)

Bn4—"In4=0, Cﬂ4"‘ﬂl4—“‘v—‘—— (31'1)
[
_ 4B — 34
an_mz__vo 24
O — _16B(B—C)oy _ w _ _ (34— 4B)(34 —8B) (54 —8B)
2 My = 258 bE 7A(A—2B) (94 — 165)
m12m3=n1:n3=0’ ms=ns=0 (825,6,7,...)

Substituting the expressions for v and r given by (3.10) into (1.6),
vith =; and n; as in (3.11), we determine
4B —3A4
Qz=—=—r9

_[__ (31 —4B)(34 —8B) (54 —8B) | 84B(B—C)
O1e = [— 2(A—12B) (94 —16B) + v Pz] rp

It is not necessary to proceed further with the calculations to see
that we have arrived at Goriachev’'s second case [ 10 ],

4. Other methods of obtaining the initial conditions of
Steklov’ s and Goriachev’ s second cases. The initial conditions of
Steklov's and Goriachev’s second cases can and subsequently will be ob-
tained by methods other than those they used. We will also investigate
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the possibility of supplementing these initial conditions in various ways,
as well as that of integrating the resulting equations.

In his first paper [3 ], Field, denoting the principal moments of
inertia by J1, J2' JB' finds a special solution under the conditions

f=g=0, k=0

_ ____2MghJy(J1+ T2 — Jy)
Jst = 2J,J,, T = T FeeT) 4.1)

with the additional restriction J1 > 2J2 or J2 > 2J2 , where h, f, g are
the coordinates of the center of gravity and T is a constant of the
kinetic energy integral.

Gorliss, in his first paper, using the same notation as Field, finds
the initial conditions for the special solution in the form

J=g=0, k=0
E_ﬂlgh(2J1J2—2J1J3—2J2J3+J32)
o (Js— 1) (Js— J2) !

20, < J3< (4.2)

where E is a constant of the kinetic energy integral.

If we put J32 2.]1 Jz in (4.2), we obtain conditions (4.1), assuming
that the first supplementary condition J, > 2J, holds good.

To compare the conditions, we introduce the Table S (see below). In
this Table symbols occurring in the same column can be substituted for
each other. The first row is our notation, the second rowSteklov's, the
third Field’'s, the fourth Gorliss’s, the fifth Fabbri’'s, and the sixth
Kuz’'min's.

(A, B, C, z,, Yo oo h Kk, p, q, 1 1, 2, Ys)
(A4, B, €, a, 0, 0, — — p, gq, r £, N, )
Ky (Jsy, Ju Joo 2, 0, 0, T, k, @3 o, ©, —vys, —Y1, —7Y2)
Jay J1, Joo by f, g L, kw3, @@, o, —y3 —1, —Y2)
€, A, B, z, 0, 0, m, K: r, p, q, Y3, Y1, Y2)
(A, B, C, =, 0, 0, — — p, q r, —Yi, -—Y2, —¥3)

In the Table the last three columns denote the direction cosines of the
force of gravity relative to a fixed coordinate system:

11 =sinlsing, g, =sinlcosgp, g3=-cosb, m, = 2Gw,?

Applying the substitution Table S, conditions (4.2) can be written in
the form
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ZC'<A<B, yoz'——Zo'—“—O, xo#o, k=0

_ Q(A?—2A4B —2AC + 2BC)
h= (A—B) (1 —0) (4.3)

The constant of the area integral in Steklov’s second case, k = Apy, +
Bgy, + Cr:"ﬁ vanishes according to (2.5), since it is proportional to the

integral which Steklov obtainedin the form
Ap?+ (2B —A)¢* + (2C — A)r2 =0 (4.4)

Indeed, according to Steklov’'s formula

B—A)(C—A
Op = = AC=A)

ic—a P
B—AY(C—A
Qs = ( 23)1 A ) rr (4.5)

_ (B—A)(C— A) (2B — A) (B —C)
Qn = (21—3—,4)(20-.,1)[01’2 - A qz]
or

_ (B—A)(C—4) (2C — A) (B—C)
o =gr—a (zc—A)[Bpa’*' A ’2]

it follows that

A—B)(4A—C)C .
k= (5(233)/(1)(2(;_):) [Ap® + (2B —A) ¢ + (2C — A) r?]

which, because of (4.4), gives k= 0,

By (4.4), Steklov's expression for y, can be rewritten as

On=—— igB—_Aj)“(’zg f)A) [B(2B — A)g* + C (2C — A)r*]  (4.6)

and this coincides with the value for y, given by (2.5). Steklov obtained
yet another integral

Ap* + B(2B— A)g*+C (2C — A) r* = K, (4.7)

where the constant K1 is determined from the relation

Ki? (B — A (C — A)?

QA 2B — A (2C — Ap 1

The constant of the energy integral h = Ap? + Bq? + Cr? according to
(4.4), (4.6), and (4.7) is
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Q(A*—2AB —2A4C + 2BC)

(B—A)(C—A) (8o =£1) (4.8)

h=80

Comparing condition (4.8) and the restriction imposed on 4, B, C, Yor
zo, k with condition (4.3), we see that they coincide (for €g =+ 1.

In his second paper [4 ], Gorliss, generalizing his previous case
(including Field's) and Kowalewski's, found the initial conditions for
the other special solution in the form

e - _ (16T —8T5)
J=8=0, k=0, Ty = 167, — 974 (4.9)

bMgh (J5— 2J1) (C4J12 — 56J,T 5 — 9T g2)

k= (4J 1 — 3J3) (AJ 1F — 64J 15 + 16T 5%)

Applying Table S, condition (4.9) can be written as

¢ = 8B(A—2B)
= 94168 °

j = 4Q(A —2B) (94— 56AB + 64BY)
(34— 4B) (1542 — 6418 + 6459

y0=30:‘07 k:()
(4.10)

The constant of the area integral k = Apy1 + Bgy, + C'ry3 in Goriachev's
second case is equal to zero {as the coefficient of the O-th power of p)
according to the formulas he obtained for Y0 Y30 Y3e

By virtue of Goriachev's relations [ 10 ]

B—-C , A—B+4yx o
a7 C =L

Q"{;=41251—:—B—+—xp4+<x+312L—}—2)\A—_é3—_t—x»)p2 4 Lh

ma
(4.11)
A— B+, C—2A4+2B— 2 B+C— A—2
N R
or 7\ .. _B—C
—312L)p~—x—rq2—Ll=0
where
L = QBC __4B-—-34
= @EAS4BEB—0)@B—3C)® AT T3
(4.12)
\ _ (84 —4B) (2B —C) (2B — 3C)

BC

the constant of the energy integral is a polynomial of fourth degree in
p. Putting the constant terms in the polynomial in p equal to zero, we

get
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=~ @l + woe — 2L

By the third relation of (3.5) and (4.12) the constant h has the value
indicated in (4.10).

The restrictions on A, B, C, y,, z,, h obtained by Gorliss are the

same as those in Goriachev’'s second case.

5. Kowvalewski’s case. In the system (1.1) we perform the trans-
formation t = r]3/2 on the independent variable. Then (1.1) reduces to

(& V=1=v(c— P+ 4010 (0 — ) + ko (s — ) — Qk*)}
A2B0<d9 )2=7”( AR 4 AJv? -+ A2Byve 4 Plpt +ANp21—-AzBC':2) (5.1)
(67— A9) S 4 [ (s — 1) — 20k1 4 A — ) T =
The series

v="9" (et e te+ .. ) (eas=0)
p=m(So+smtsm*t...) (%40 (5.2)
=+ 1+ WP+ L) (o 7 0)

satisfy (5.1) formally.

Substituting the series (5.2) in equations (5.1), equating coeffi-
cients of equal power of n and assuming that k = 0 (one of the necessary
conditions for the existence of a unique solution obtained in [11]), we
get the following system of equations for determining the coefficients
of the series (5.2):

1. beg + %2 = 0, — Biegng -+ BCxy® =
(The third equation is an identity).
2. e, (165 + 3xo?) + 6x,e9%, = 0
9Aey (269 — Byng) -— 9Ax, (Byey — 2BCxg) + 5,2 [4ABC — 9 (Je, - Nxg)] = 0
A (€19 — 1,€) + 3e¢8e2 — 2452x;, = 0
3. 3ey (8e, + 3%,%) + 18xsey%, + 166, + 18e;%p%, 4 M %ey = 0
A%e,y (260 — Byxg) — A%y (Biey — 2BCxy) + A%e,* — Ae, (AByx; + J5,2) —
— 245y (Je, + Nxg) sy + A2BCx > — ANxys,2 — P's)t = 0
24 (e9%g + %004) — 2015,2 — 5, (6ey — 5Ax,) ¢ 4 15,2 = 0 (5.3)

The solution of the first system of (5.3) is
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eg=—4B?, xg=—4B or e,=—4C? x,=—4C
For precision, we will take the first values.

The second system of (5.3) assumes the form

e, —6Bx; =0
94 (B— C) (e, — B;) — (9AB — 8AC — 9B2 + 9BC) 5> = 0
A(e;— Br)) — (24— 3B) 52 =0

To have s # 0 the determinant of the system relative to e, x,, s
must be put equal to zero, This gives

18B (B —C)
A==p_Toc (5.4)
Then

6(2A4 — 3B) s, (24 —3B) sy

@=—""54 ' T 7 4B

Further computation of the coefficients is not necessary. We assume,
as we did earlier, that

VY=ot 0 F Yot 4 oo FAnd™ T= P+ $ip 4 op? 4 ..+ $ap™ (5.5)

Substituting the series (5.2) into (5.5) and equating coefficients of
like powers of 5, we get a system of algebraic equations for determining
the x; and ¢..

Putting e, = - 4B2, ko == 4B 1in these equations, we get
4B(B —C
B% — s = 0, C%— X3 = LLso‘—)
3B —24 . 24 — 3B)(C — 6B 12B (B —C) s
B — o =221 cq,z_xz___( 51‘:2 ) (sus ) 51
Bxy — e3 2(2A—-3B)s,
B vy == 2 e
i % A (5.6)
1 Cv 3 —
Chr— 1= A—boﬁ — 2(Cpy — 12) 51 — 3 (Cg — y3) (5250 + 5,%)
bi=x=0 (i 456,...)

Substituting the expressions (5.5) for v, r into (1.6), we obtain

2072 = q[Bbr-- 71 + 2(BYs —— o£2) p + 3 (Bps — xs) p?]

(5.7)
2Q1s =1 [Ch — 70 + 2(Cds — 12) 0 + 3 (Cha — %3) 0]

Kowalewski [ 11 ] found the condition on A, B, C expressed by (5.4) and
expressions for y,, y, given by
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2072="C[§1 + 2( 2 — d‘g‘§> P]q

(5.8)
201 =B [“1'131 +2 (“z — C_.:B—A) P+ 3“3'ﬁ1-ll’2] r

For example, we compare the coefficient of pg in the expression for
¥y, in Kowalewski’'s formla (5.8) with that of (5.7).

From (5.8), this coefficient, by (5.4), is equal to

B (9B — 6C)
Q (9B —10C) (5:9)

The same coefficient, according to (5.7), (5.4) and (5.6) is equal to
the same expression, with sign reversed. The difference in sign is ex-
plained by the fact that the sign of the factor Q in Euler’s equations
differs in the cases being compared. Hence (5.4) and (5.7) characterize
Kowalewski's case.

6. Chaplygin’s second case. We consider the transformations
0= 2 , t = C'lx
for p and t in (1.1) and assume that the condition k = 0 is satisfied.

After these transformations, (1.1) transforms into

(F)=F1=ve—mr +402(— )

AB(z ( Zc )2= C[— A2 4 AJvz® 4 A2Bpvt + P'z8 + ANz< — A*BCx?]  (6.1)
d 3 d d
(zs—Ar)Ez_— + Az~ h)zzgz— +A(v—2?) .J;_ =0

This system is formally satisfied by the series

v=(go+ @i+ g2+ ) (8o #0)
z2=""Yho+ i+ R+ ..)) (ho = 0) (6.2)
c={ e+ L+ L. ) (I == 0)

Substituting the series (6.2) into (6.1) and comparing coefficients of
equal powers of {, we find the following systems for determining the
coefficients of the series (6.2):

1. bgo+ L2 =0
Argr — Ag,(Jh® + AB\ly) — P'h® — Ahg* (Nl — ABC) + ABCIgd = 0
2g0 -_ Alo = O



1062 A.A. Bogoiavlenskii

2

2, g1l — 6ligoly =0
Ag (248 — Jhy®> — AB\ly) — hy (3AJ gy + 6P’ he® + 3ANI, — A2BC) hy* —
— Al (AB,go + Nh® — 24BCly) = 0
281 (2hg® + Alg) + 6k, (38, — 2Al,) he? — Al (280 + he®) =0
3. 3gale® + 18Lxg0lo + 16¢,% + 18g1L1l, + 9y%go =0

Ag, (24gy — Jh® — AB\l)) — hy (3AJ gy + 6P’ hy® + 3ANI, + A2BC) hy* —

— Al (AB,gy + Nhy® —24BCly) + A%, — Ag, (3Jhyh® +AB,l)—

— h?(3AJ gy + 15P'h® + 3AN ) hy + A2BCL? — 3ANR b2 =0
28, (ho® + 24ly) + 3hy (680 — SAL) he? — Aly (480 — he®) +

+ 12g,hho? + 3hy% (6g, — DALy) hy — 64R110e% =0 (6.3)

......................

A solution of the first system of (6.3) is

__ A*(A—2B)(A4~2C)

g0=_A2) h03= (A_B)(A_C) »

lo=—24  (6.4)

The second system of (6.3) takes the form
g1 — 341, =0
Agy [Thed 4 242 (A — B — C)] + hy [6P'hy® — 64% + 943B, — 134°BClhe* +
+ 1[Nhe* — A43B, + 44°BC] = 0
4g, (hed — A?) 4 6A%hyhe? — Al (hy® — 24%) = 0

If the determinant of the system relative to g, h l1 does not vanish,

1l

then
Si=h=4L=0 (6.5)
The third system of (6.3) assumes the form
g+ 34lL, =0

Aga [Jhe® + 242 (A — B,)] + hy (6P’ he* — 6A4% + 9A4°B, — 1142BC) hy? +
+ Aly (Nhg> — A3B, + 44°BC) = 0

285 (he® — 44%) + 1242h,h2 + Aly(hg® + 442) =0

Because of the value of ho3 from (6.4) the determinant of the system
relative to g, h2' l2 is equal to

8 / AT(A — 2By (A — 2C)
Am 14ty L A= SOF (A, — 3BC) (94° — 184B, + 32BC)

If we assume that L, # 0, then necessarily A = 0, and this yields the
condition

4BC =9 (A — 2B) (A — 2C) (6.6)
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Without computing the coefficients further, we suppose,as before, that
=NFMFNEH. . M2, T=mp Tz w224 w2t (6.7)

Substituting the series (6.2) into (6.7) and equating coefficients of
equal powers of { we obtain a system of algebraic equations for determin-
ingki,ﬂi.

Using (6.5) and (6.4), we get from these algebraic equations:

(A—B) (C— A) (A—B) (C— A)

Bry — g = A4—-z2c) Oy —Ag= A(A—2B)
__Bly—g (A— B)(C— A)
Bﬁl - )‘l = ho —3 A(A=2C) h2h0 (6‘8)
_Clhi—g (A— B)(C — A)
C‘Kl —")\1 = ho — 3 A (A —72B) hZhU

N=a,=0, =m=0 (i=456,...)
Substituting the expressions for v and r from (6.7) into (1.6) yields

201 = 418 — b+ 2(Bry— ) s+ 3Br— A o
2013 =7 [Cﬂl —N + 2(0“2 _— )\2) z 4 3 (Cﬁ3 — )\3) 2?] ';i%

As an example, the coefficient of pg 1in the expression for Yy, in
(6.9) 1is

(A—B)(C— A)
Q(4—20)
according to (6.8), if we go back to the old variables. This value is the
same as that obtained by Chaplygin [12 ] in his second case.

It is not necessary to calculate or compare coefficients further, to
assert that (6.9) characterizes Chaplygin's second case [12].
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